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Abstract

This paper presents an elastodynamic solution for stress wave propagation in an orthotropic laminated spherical

shells with arbitrary thickness. The elastodynamic equation for each separate orthotropic spherical shell is solved by

means of finite Hankel transforms and Laplace transforms. Then by using the interface continuity conditions between

layers and the boundary conditions at the internal and external surfaces of the laminated shells we determine the

unknown constants involved. Thus an exact solution for stress wave propagation in orthotropic laminated spherical

shells subjected to arbitrary radial dynamic load is obtained. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The investigation of stress wave propagation in hollow spherical or cylindrical structures subjected to
exterior or interior time-dependent pressure is a typical elastodynamic problem. Solution of this problem
has various useful engineering applications, such as non-destructive evaluations of material properties, flaw
detection in structures and determination of resonance frequencies. In the past, a number of analytical
solutions for stress wave propagation in a structure consisting of a single isotropic material have been
obtained by Huth (1955), Baker (1961), Baker et al. (1966), Torvic (1967), Achenbach and Fang (1970),
Mchinney (1971) and Pao (1983). However the investigation of stress wave propagation in a laminated
structure subjected to shock loading is a more complex problem which so far the subject has not been
investigated as extensively as it deserves.

Yu (1960), Chu (1961) and Bieriek and Freudenthal (1962) studied vibrations in laminated shells using a
Timoshenko-type theory. This limited application to thin laminated shell-type structures and this method
was only used to calculate vibrations in laminated structures. Cho et al. (1998) presented an elastodynamic
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solution for the thermal shock stresses in an orthotropic thick-wall cylindrical shell. Wang et al. (2000)
presented both theoretical and finite element solutions for an orthotropic thick-wall cylindrical shell under
impact load. Piskunov et al. (1994) developed improved transverse shear and normal deformation higher-
order theory for the solution of dynamic problem involving multilayered plates and shells with an arbitrary
number and sequence of transverse isotropic layers. Tabiei et al. (1999) used the finite element approach to
investigate the behaviour of cylindrical laminated shells when acted upon by a sudden dynamic load.
Shakeri et al. (1999) solved for dynamic response of an axisymmetric laminated composite cylindrical shell
of finite length. He used higher-order shear deformation theory and trigonometric function expansion in
the axial direction.

In this paper the equations for stress wave propagation in an orthotropic laminated thick-walled
spherical shell are developed and solved by using a finite integral transform method. Firstly, the governing
equations for each orthotropic layer of the laminated spherical shells are derived and then solved by means
of finite Hankel transforms and Laplace transforms. The basic solution for the governing equation of each
separate orthotropic layer is composed of a quasi-static solution with unknown constants and a dynamic
solution meeting the homogeneous boundary conditions. From the interface continuity requirements be-
tween laminated layers and the internal and external boundary conditions of the laminated spherical thick-
wall shell, we can easily determine the unknown constants involved in this solution. Therefore an exact
solution for stress wave propagation in an orthotropic laminated spherical thick-wall shell is obtained. This
solution is illustrated with numerical examples to demonstrate that the methodology is simple to apply and
theoretically valid.

2. Elastodynamic solution for orthotropic laminated thick-walled spherical shell

Consider an orthotropic laminated thick-walled spherical shell (fiber reinforced spherical vessel) acted on
by dynamic internal pressure, wðtÞ, which is uniformly distributed over the internal surface. This investi-
gation is most conveniently carried out by using spherical coordinate system ðr; h;uÞ with the origin at the
centre of the spherical shell. The material of each separate layer in the laminated thick-walled spherical shell
is assumed to possess transverse isotropy (fiber reinforced spherical vessel) about any radius vector drawn
from the common centre of the spherical shell to a given point. It is obvious that for the elastic properties
indicated, the distribution of stress and strain depends only on the radial variable r, and all points are
displaced only in the radial direction during deformation. UjðrÞ denotes the single (radial) component of
displacement of each separating layer. The geometry of the shell structure is shown in Fig. 1, where a1 and
bn are respectively the internal radii and the external radii of the complete spherical shell. aj and bj
(j ¼ 1; 2; . . . ; n) as shown in Fig. 1, represent respectively the internal radii and the external radii of the j
layer of the laminated shell. In Fig. 1, we have

aj ¼ bj�1 ðj ¼ 1; 2; . . . ; nÞ ð1Þ

Assuming that the laminated spherical thick-wall shell is subjected to an arbitrary dynamic internal
pressure, wðtÞ, the orthotropic elastodynamic equation of the jth layer of the spherical thick-walled shell
may be obtained as per Lekniskii (1981)

o2Ujðr; tÞ
or2

þ 2

r
oUjðr; tÞ

or
� 2

Aj
22 þ Aj

23 � Aj
12

Aj
11

Ujðr; tÞ
r2
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j

o2Ujðr; tÞ
ot2

ðaj 6 r6 bj; tP 0Þ ð2aÞ

where Ujðr; tÞ expresses the single (radial) component of displacement in the jth layer, Vj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Aj
11=qj

q
is the

spherical wave speed in the jth layer and qj is the density in the jth layer. Elastic constants, Aj
kl, in the above

formula are related to Ej and vj in the j layer as follows:
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where Ej
r and Ej

h are Young’s modulus for tension along and perpendicular to the radius vector, r, re-
spectively. vjr is Poisson’s ratio for transverse contraction in a direction perpendicular to r when tension is
applied in the r direction and vjh is Poisson’s ratio for contraction in a plane normal to radius vector, r, for
tension in the same plane.

The initial condition for Eqs. (2a) and (2b) may be written as

Ujðr; 0Þ ¼ Uj
0ðrÞ;

oUjðr; oÞ
ot

¼ V j
0 ðrÞ ð3Þ

Boundary and continuity conditions between interfaces of the laminated spherical shell may be expressed as
internal boundary condition:

r1
r ða1; tÞ ¼ wðtÞ ð4aÞ

external boundary condition:

rn
r ðbn; tÞ ¼ 0 ð4bÞ

displacement continuity condition between layers:

Ujðbj; tÞ ¼ Ujþ1ðajþ1; tÞ; ðj ¼ 1; 2; . . . ; n� 1Þ ð4cÞ
Stress continuity condition between layers:

rj
rðbj; tÞ ¼ rjþ1

r ðajþ1; tÞ; ðj ¼ 1; 2; . . . ; n� 1Þ ð4dÞ
Utilizing geometrical relation and generalized Hooke’s law, dynamic stresses in the jth layer are given by

rj
rðr; tÞ ¼ Aj

11

oUj

or
þ 2Aj

12

Ujðr; tÞ
r

ð5aÞ

Fig. 1. Geometrical structure of laminated thick-walled spherical shells.
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Assume that the general solution of Eqs. (2a) and (2b) is of the form

Ujðr; tÞ ¼ Uj
s ðr; tÞ þ Uj

dðr; tÞ ð6Þ

where Uj
s ðr; tÞ is the quasi-static part and Uj

dðr; tÞ is the dynamic part of the solution. Assume that the static
term Uj

s ðr; tÞ satisfy the following equations
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Applying general integral to Eq. (7a) yields

Uj
s ðr; tÞ ¼ uj

1ðrÞwðtÞ ð8Þ

where
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In Eqs. (8), (9a) and (9b) the independent constants of integration are Cj
1 and Cj

2. These constants can be
determined by considering boundary conditions at the internal and external surfaces and continuity con-
ditions at laminated interfaces.

Substituting Eq. (6) into (5a) and (5b) and utilizing Eqs. (7a) and (7b) provides an inhomogeneous
dynamic equation with homogeneous boundary conditions from which we can determine the dynamic
solution term Uj

dðr; tÞ for the jth layer.
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Suppose that

Uj
dðr; tÞ ¼ r�1=2f jðr; tÞ ð11Þ

Substituting Eq. (11) into (10a), (10b,c) and (10d,e) gives
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f jðr; 0Þ ¼ 0; _ff jðr; 0Þ ¼ 0 ð12d; eÞ

where

Uj
s1ðr; tÞ ¼ r�1=2Uj

s ðr; tÞ ð13Þ

and Uj
s ðr; tÞ is the known quasi-static solution shown in Eq. (8). Let Uj

s1ðr; tÞ ¼ 0 in Eq. (12a) then this
homogeneous equation with homogeneous boundary conditions (12b,c) may be solved by assuming

f j
0 ðr; tÞ ¼ gðrÞ expðixtÞ ð14Þ

From Eqs. (12a), (12b,c) and (12d,e) and (14) we have the following eigenequation

YaJb � YbJa ¼ 0 ð15aÞ

where
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j
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where JkðnirÞ and YkðnirÞ are kth-order Bessel functions of the first and second kinds respectively. In the
above formula ni (i ¼ 1; 2; . . . ; n) express a series of positive roots of the natural eigenequation (15a).

Define a finite Hankel transform f ðr; tÞ such that

�ff ðni; tÞ ¼ H ½f ðr; tÞ� ¼
Z b

a
rf ðr; tÞGkðnitÞdr ð16Þ

Then the inverse Hankel transform is given by

f ðr; tÞ ¼
X
i

F ðniÞ�ff ðni; tÞGkðnirÞ ð17Þ

where

F ðniÞ ¼ 1

Z bj

aj

,
r½GkðnirÞ�2 dr ð18aÞ

GkðnirÞ ¼ JkðnirÞYa � YkðnirÞJa ð18bÞ

Applying the finite Hankel transform (16) to Eq. (12a) we have
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where

U
j
s1 ¼ H ½Uj

s1ðr; tÞ� ð19bÞ

The first two terms on the left hand side of Eq. (19a) should be zero in view of the homogeneous boundary
condition Eq. (12b,c). Thus Eq. (19a) simplifies to
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Applying Laplace transforms to Eq. (20) we have

�ff j	ðni; pÞ ¼ �U
j
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ðniVjÞ2

ðniVjÞ2 þ p2
U

j	
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where p is the Laplace transform parameter. The inverse Laplace transform to Eq. (21) gives
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Substituting Eqs. (22a)–(22d) into Eq. (17) and utilizing Eq. (11), the solution to (10a), (10b,c) and (10d,e)
can be expressed as
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X
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�
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ð23aÞ

where

FRIj1 ¼ Rj
1I

jðnj
i ; tÞF ðn

j
iÞ; FRIj2 ¼ Rj

2I
jðnj

i ; tÞF ðn
j
iÞ ð23bÞ
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iÞ ¼ r�1=2Gkðnj
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From Eqs. (6), (8), (23a), (23b) and (23c), the solution to the orthotropic elastodynamic Eqs. (2a) and (2b)
for the jth layer may be expressed as
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1

(
rk�0:5wðtÞ þ

X
i

�
FRIj1G

j
kRðn

j
iÞ

)

þ Cj
2

(
r�k�0:5wðtÞ þ

X
i

�
FRIj2G

j
kRðn

j
i rÞ


)
ð24Þ

Substituting Eq. (24) into Eqs. (5a) and (5b) gives exact expressions for general stress solutions as follows
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In the above solutions there are 2n undetermined constants, Cj
1, C

j
2 ðj ¼ 1; 2; . . . ; nÞ. Substituting the general

stress solutions (24) and (25a,b) into the boundary conditions and interface continuity conditions (4a)–(4d)
we have:at the internal boundary, r ¼ a1:
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½A1
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displacement must be continuous at the interface r ¼ ajþ1 ¼ bj:
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ð26dÞ
where j ¼ 1; 2; . . . ; n� 1. There are just 2n linear equations in Eqs. (26a)–(26d), which are used to determine
the 2n constants Cj

1 and Cj
2 ðj ¼ 1; 2; . . . ; nÞ. Thus an exact expression for the stress response for an or-

thotropic laminated spherical shell with n layers is obtained.

3. Numerical examples and discussions

As an example, calculations were carried out for two cases of orthotropic laminated spherical shells of
fiber reinforced layers and a metal liner as follows: inter[Aluminium/T300 carbon fiber] and inter[Aluminium/
Glass fiber/T300 carbon fiber]. It was assumed that the orientation of fiber reinforcement layers was such
that there was transverse isotropy along any radius vector drawn from the common centre of the spherical
shell. The material properties and the mass density for each layer of the laminated spherical shells are as
follows: (1) T300 carbon fiber layer: ETh ¼ 180 GPa, ETh=ETr ¼ 1:875, vTr ¼ vTh ¼ 0:21, qT ¼ 0:018 N/cm3.
(2) Glass fiber layer: EGh ¼ 80 GPa, EGh=EGr ¼ 3, vGr ¼ vGh ¼ 0:25, qG ¼ 0:024 N/cm3. (3) Aluminium
layer: E ¼ 70 GPa, v ¼ 0:33, q ¼ 0:027 N/cm3.

Fig. 2. Responses and distributions of the dynamic stress in the laminated thick-walled spherical shells [Aluminium/T300 fiber],

without the interference of reflected wave. (j) indicates the corresponding quasi-static solution. R ¼ ðr � a1Þ=a1, s ¼ tV1=a1, r	
i ¼ ri=p.
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Assume that the internal boundary only of the fiber reinforced laminated shell is subjected to a sudden
uniform pressure load wðtÞ. In this case we have

wðtÞ ¼ 0 t < 0�

�p t > 0þ

�
ð27Þ

In all results presented the following expressions have been used: normalised stresses r	
i ¼ ri=p, normalised

radii R ¼ ðr � a1Þ=a1 and R1 ¼ ðr � a1Þ=ðbn � a1Þ, time period T ¼ t
Pn

j Vj=ðbj � ajÞ (j ¼ 1; 2; . . . ; n), (n ¼ 2
or 3), and sample (j) indicates the corresponding quasi-static solution.

In order to verify the correctness of the solution presented in this paper consider the following. As a first
example consider the dynamic response of a laminated spherical shell having two layers inter[Aluminium/
T300 fiber] where the geometry is such that ðb1 � a1Þ=a1 ¼ 10 and ðb2 � a1Þ=a1 ¼ 20. The calculated time
was taken as 06 s ¼ tV1=a1 6 10 to avoid the influence of reflected waves at the laminated interface or the
internal and external boundaries. Fig. 2 shows the response histories of radial and tangential stresses at
r ¼ a1 and 2a1. As shown in Fig. 2(a) curve 1, the radial dynamic stress at the internal boundary ðr ¼ a1Þ of
fiber reinforced laminated spherical shell is r	

r ¼ �1. This shows that the boundary condition (4a) has been
rigorously satisfied.

From Fig. 2(a) and (b) we can see that before the stress wavefront arrives at a point in the fiber rein-
forced laminated shell, the dynamic stress at this point equals zero. When the stress wavefront arrives at this
point, there is a strong discontinuity in stress and the stress reaches its maximum value at this point. As the
stress wavefront moves past this point toward the external boundary, the stress wave oscillations at the

Fig. 3. Responses and distributions of the dynamic stress in the laminated thick-walled spherical shells [Aluminium/T300 fiber]. (j)

indicates the corresponding quasi-static solution. R1 ¼ ðr � a1Þ=ðb2 � a1Þ, T ¼ t
P2

j Vj=ðbj � ajÞ, r	
i ¼ ri=p.
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point gradually decrease and finally the stress equals the corresponding quasi-static value at the same point.
From the above analysis we can conclude that the proposed elastodynamic solution for orthotropic lam-
inated thick-walled spherical shell is valid and has the wave characteristics. At the point of the strong
discontinuity, the sign for tangential stress at the wavefront is opposite to the sign of static tangential stress,
which is similar for the result of an isotropic hollow sphere under sudden load found by Miklowitz (1966).

As a second example consider a two layer laminated spherical shell as before inter[Aluminium/T300] but
with geometry ðb1 � a1Þ=a1 ¼ 0:5 and ðb2 � a1Þ=a1 ¼ 1. Fig. 3 shows the response histories and distribu-
tions of dynamic stress for such a shell. From Fig. 3(a) curve 1 and Fig. 3(b) curve 3, we can see that the

Fig. 4. Responses and distributions of the dynamic stress in the sandwich thick-walled spherical shell [Aluminium/Glass fiber/T300

fiber]. (j) indicates the corresponding quasi-static solution. R1 ¼ ðr � a1Þ=ðb3 � a1Þ, T ¼ t
P3

j Vj=ðbj � ajÞ, r	
i ¼ ri=p.
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radial dynamic stresses at the internal and external boundaries rigorously satisfy the given boundary
conditions, at Eqs. (4a) and (4b). Because of the influence of stress wave reflected at the internal and ex-
ternal boundaries and the laminated interface, the dynamic stresses at every point in the spherical shell
appear at a strong oscillation as time T and the abrupt changes in the curves. It can be seen from Fig. 3(a)
and (b) that the maximum radial stress is at the middle of aluminium layer (R ¼ 0:25) in the laminated shell.
Radial stress at the lamination interface is continuous, which satisfies the given continuity condition Eq.
(4d). For most response histories, radial dynamic stress at the interface (R1 ¼ 0:5) appears as a compressive
stress wave but at some response histories, the radial dynamic stress at the interface appear as a tensile
stress wave which might easily induce delamination failure of the laminated spherical shell.

Fig. 3(c) shows the response history for tangential stress at the internal boundary of the laminated shell.
Fig. 3(d) shows the response history for tangential stress at the interface of the laminated shell. Tangential
stress at the laminated interface appears as a discontinuity. Tangential stiffness of the T300-carbon fiber
layer is much larger than the tangential stiffness of the aluminium layer, hence tangential stress at the
laminated interface of the T300-carbon fiber layer is much larger than the corresponding tangential stress in
aluminium. Comparing Fig. 3(c) and (d), we can see that the maximum tangential dynamic stress appears at
the laminated interface in T300 fiber layer. This is different from the response history for a spherical shell
constructed from a single material, where the maximum dynamic tangential stress occurs at the inner
boundary.

As a third example consider a laminated spherical shell with three layers: inter[Aluminium/Glass/T300]
and geometry ðb1 � a1Þ=a1 ¼ 0:5, ðb2 � a1Þ=a1 ¼ 0:75 and ðb3 � a1Þ=a1 ¼ 1. The corresponding response
histories are shown in Fig. 4. The maximum radial dynamic stress still appears at the middle point
R1 ¼ 0:25 of the first layer (Aluminium liner) and radial dynamic stress gradually decreases as the radius r
increases. The radial dynamic stress at two laminated interfaces is continuous compressive stress wave. This
will not easily induce delamination failure at the interface of this laminated spherical shell. Because the
stiffness of the T300-carbon fiber layer is much larger than that of other two layers, the maximum tangential
dynamic stress appears at the second interface between the T300 and glass fiber layers. Comparing Figs. 3
and 4, it can be seen that the response histories and distribution of dynamic stress in an orthotropic
laminated spherical shell are influenced by lamination material and pattern of lamination.

It can be concluded that the major accomplishment of this study has been to provide a better solution
method for stress wave propagation in fiber reinforced laminated spherical shells. This dynamic analysis
method may be applied to a wide range of laminated structural shells. According to engineering require-
ments, this method may be used to rationally select lamination material and laying pattern in the design of
laminated spherical shell structures subjected to shock loading. On the other hand, given the dynamic
response signal of stress waves in a laminated spherical shell we can deduce the laying pattern and material
properties of lamination.
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